Universal Serial Bus


Der Universal Serial Bus (USB) ist ein standardisiertes, serielles Bus-System zum Anschluss von Peripheriegeräten an Computer.

An einen USB-Port können bis zu 127 Peripheriegeräte angeschlossen werden. Die Daten werden bitseriell über eine verdrillte Zweidrahtleitung übertragen. Mit der ersten USB-Generation waren nur Datenraten von 1,5 MBit/s (Low Speed) oder 12 MBit/s (Full Speed) möglich. Im Jahr 2000 wurde dann USB 2.0 verabschiedet, dass 480 MBit/s (High Speed) ermöglicht.

Die vierpolige USB-Schnittstelle verfügt über eine weitere Zweidrahtleitung. Über diese kann eine Stromversorgung für Geräte mit geringem Leistungsbedarf (je nach Host 100 mA oder 500 mA bei 5V) realisiert werden.

Es werden Hubs zur Erweiterung der Anschlusskapazität unterstützt. Die maximale Übertragungsdistanz eines Übertragungsabschnittes beträgt 5 Meter.

USB erlaubt es, Geräte während des Rechnerbetriebes anzuschließen und sofort zu benutzen, ohne den Rechner neu zu starten (Hot-Plug-In). Alle angeschlossenen Geräte teilen sich einen Interrupt.

Die Stecker von USB-Kabeln sind verpolungs- und vertauschungssicher gestaltet. Auf der Seite des Hostcontrollers werden flache Stecker (Typ A - DIN IEC 61076-3-107) verwendet. Am angeschlossenen Gerät wird das Kabel entweder fest angebracht oder über einen annähernd quadratische Stecker (Typ B - DIN IEC 61076-3-108) angeschlossen. Zum Teil werden aber auch auf der Geräteseite Typ A-Steckern verwendet.

Für Geräte mit geringerem Platzangebot existieren kompaktere Steckerverbinder, die Mini-USB-Stecker. Im USB-Standard verankert ist davon nur ein fünfpoliger, trapezförmiger Stecker, alle anderen Mini-USB-Stecker sind herstellerspezifische Kreationen.

Speziell für mobile Kommunikationsgeräte wurde 2007 ein noch kleinerer Stecker vorgestellt. Der sogenannte Micro-USB-Stecker ermöglicht eine noch kompaktere Bauform.

Im November 2008 stellte das USB Implementers Forum (USB-IF) die Spezifikation USB 3.0 vor. Damit werden Datenraten von 5 GBit/s brutto bei einer Signalfrequenz von 2,5 GHz erreicht (Super Speed). Die höheren Datenraten werden durch eine Übertragungstechnik ähnlich PCIe und Serial-ATA ermöglicht, die allerdings zusätzlich zum bisherigen Datenleitungspaar im Kabel noch zwei weitere Adernpaare plus einen weiteren Masseanschluss erfordern. Da in den Steckern somit fünf weitere Kontakte erforderlich sind, wurden mit USB 3.0 neue Steckverbinder und Kabel eingeführt.

Im September 2013 folgte die Vorstellung von USB 3.1. Diese bringt wiederum eine verdoppelte Datenrate von 10 GBit/s brutto bei 5 GHz Signalfrequenz (Super Speed+). Außerdem wurde die Codierung von 8B/10B auf eine 128B/130B-Codierung umgestellt, was den Overhead von 20 auf 3 Prozent senkt. Kabel-Stecker und Kontakte haben sich gegenüber USB 3.0 nicht geändert, es wurden aber genauere Signaldämpfungsspezifikationen (6 dB) ausgegeben.

Zusätzlich wurde aber in 2014 ein neuer Typ-C-Stecker vorgestellt, der symmetrisch aufgebaut ist und zukunftssicher für die nächsten 15 Jahre sein soll. Dazu wurden unter anderem Reserven bei der Signaldämpfung (11 dB) aufgenommen und Erkennungsroutinen spezifiziert, welche die Übertragung von Nicht-USB-Signalen über die Leitungen des Kabels ermöglichen sollen. Wie auch bei anderen Initiativen für ein universelles Kabel, soll es möglich werden, alle Arten von Kabeln (Daten, Strom, Audio, Video) über eine Steckverbindung abzuwickeln.



Siehe auch:
EHCI
OHCI
UHCI
USB OTG
Wireless USB
xHCI

0-9|A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|alle

Suche im Lexikon nach im

 

Fachartikel

Anwenderbericht: Software-definierter Storage im Medienmarkt [28.01.2015]

Die in München ansässige picturemaxx AG versorgt mit ihren Mediendatenbanken den Bedarf an digitalen Inhalten von Tageszeitungen, Magazinen und Verlagshäusern. Dabei verarbeitet das Unternehmen teilweise mehr als 600.000 Dateien pro Tag. Bei der Modernisierung der Infrastruktur machte sich die IT-Leitung auf die Suche nach einem Speichersystem, das sowohl eine maximale Verfügbarkeit als auch eine Enterprise-taugliche Performance zu bieten hat. Lesen Sie in unserem Anwenderbericht, wie sich dies mit Hilfe von Software Defined Storage realisieren ließ. [mehr]

Grundlagen

Malware-Schutz aus der Cloud [23.01.2015]

Quasi alle Antimalware-Hersteller setzen zwischenzeitlich auf die Cloud, um aktuelle Daten zur Malware-Verbreitung zu sammeln und zeitnah neue Signaturen auf den Weg zu bringen. Microsoft erfasst nach eigenen Angaben Telemetriedaten von mehr als einer Milliarde Windows-Rechner weltweit. In unserem Grundlagenartikel erläutern wir exemplarisch, wie der hauseigene Cloud-Schutz funktioniert. [mehr]