dynamisches LAN-Switching


Die Technologie der Datenpaket-Vermittlung hat man zu Beginn der neunziger Jahre auch auf LANs übertragen. Im Prinzip nehmen die LAN-Switches die Funktion herkömmlicher Bridges bzw. teilweise sogar die von lokalen Routern ein. Sie vermitteln mit sehr hoher Geschwindigkeit Datenpakete zwischen Ein- und Ausgangsport. Wenn LAN-Switches auch prinzipiell Multi-Port-Bridges sind, haben sie doch einige Unterschiede aufzuweisen.

In LAN-Switching-Hubs werden die Switching-Funktionen über eine eng gekoppelte Shared-Memory-Matrix vermittelt - im Gegensatz zu den Shared-Bus-Architekturen in herkömmlichen Bridges und Routern. Mit dem LAN-Switching-Design erreicht man verschiedene Vorteile gegenüber herkömmlichen Bridges:

  • extrem kurze Verzögerungszeit (Latency)
  • Übersetzung zwischen High- und Lowspeed-Netzwerken wie 10BaseT mit 100BaseT
  • viele gleichzeitig benutzbare Kommunikationspfade
  • volle Medium-Geschwindigkeit an jedem Port
  • hohe Portdichte

Während sich also z.B. beim herkömmlichen Ethernet alle Teilnehmer 10 MBit/s teilen müssen, stehen bei Switched-Ethernet volle 10 MBit/s zwischen zwei Ports zur Verfügung. Wenn N die Anzahl der Knoten ist, so kann durch Einsatz eines Switches die Bandbreite theoretisch auf das N/2-fache gesteigert werden. Dazu müssten sich aber alle Rechner immer nur paarweise unterhalten. In der Praxis ist es aber eher so, dass die Client-Stationen auf einen oder mehrere Server zugreifen wollen. Da dabei das Segment vom Switching-Hub zum Server immer noch von allen Clients geteilt werden muss, wird es zum Nadelöhr. Eine Erhöhung des Datendurchsatzes wird man daher nur erreichen, wenn man den Uplink zum Server mit einer höheren Bandbreite (z.B. 100 MBit/s) versieht.

Das LAN-Switching ist in der Praxis sehr interessant, da zur Erhöhung der Bandbreite im Netzwerk nur der Hub und der Server-Anschluss geändert werden müssen. Die größere Anzahl der Clients kann dagegen mit der alten Hard- und Software weiterarbeiten.

LAN-Switching ist nicht standardisiert. Dies ist aber auch nicht notwendig, da sich die Technik lokal auf den Switch beschränkt. Für die Endgeräte ist sie transparent.

Technologien, die auf diesem Prinzip basieren, sind u.a.:
ATM (Cell-Switching),
Fiber-Channel,
Ethernet-Switching,
Token-Ring-Switching,
FDDI-Switching,
100VG-AnyLAN
Switched Ethernet
Switched FDDI
Switched Token-Ring

Weitere wichtige Klassifikationen des Switchings sind die Anzahl der anschließbaren Teilnehmer pro Port (Segment-Switching, Port-Switching).

Außerdem spielt das intern verwendete Vermittlungsverfahren (Cut-Through oder Store-and-Forward) eine Rolle.

0-9|A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|alle

Suche im Lexikon nach im

 

Fachartikel

Netzwerküberwachung mit SNMP (3) [20.11.2017]

Netzwerke sind in der Regel sehr heterogen aufgebaut und bestehen aus zahlreichen, verteilten Komponenten. Für Sie als Administrator bedeutet dies, den Überblick zu behalten, um zeitnah auf Probleme reagieren zu können, oder diese im Idealfall von vornherein zu verhindern. Mit dem Simple Network Management Protocol (SNMP) steht Ihnen hier ein erfahrener Begleiter zur Seite. Im dritten Teil der Serie erklären wir, wie Sie die richtige SNMP-Version finden und was beim Monitoring mit SNMP dringend zu beachten ist. [mehr]

Grundlagen

Browser-Isolation mit Adaptive-Clientless-Rendering [27.06.2017]

Web-Browser gehören heute zu den wichtigsten Anwendungen in Unternehmen - damit allerdings auch zu den bedeutendsten Schwachstellen für Angriffe. Das simple Laden einer bösartigen Web-Site reicht aus, um das Endgerät des Nutzers zu kompromittieren und kann zur Installation von Malware, Datendiebstahl oder der Penetration von Firmennetzen führen. Neue Isolationstechniken versprechen Abhilfe. Dieser Grundlagen-Artikel erläutert, wie die Browser-Isolation mit Adaptive-Clientless-Rendering funktioniert. [mehr]