dynamisches LAN-Switching


Die Technologie der Datenpaket-Vermittlung hat man zu Beginn der neunziger Jahre auch auf LANs übertragen. Im Prinzip nehmen die LAN-Switches die Funktion herkömmlicher Bridges bzw. teilweise sogar die von lokalen Routern ein. Sie vermitteln mit sehr hoher Geschwindigkeit Datenpakete zwischen Ein- und Ausgangsport. Wenn LAN-Switches auch prinzipiell Multi-Port-Bridges sind, haben sie doch einige Unterschiede aufzuweisen.

In LAN-Switching-Hubs werden die Switching-Funktionen über eine eng gekoppelte Shared-Memory-Matrix vermittelt - im Gegensatz zu den Shared-Bus-Architekturen in herkömmlichen Bridges und Routern. Mit dem LAN-Switching-Design erreicht man verschiedene Vorteile gegenüber herkömmlichen Bridges:

  • extrem kurze Verzögerungszeit (Latency)
  • Übersetzung zwischen High- und Lowspeed-Netzwerken wie 10BaseT mit 100BaseT
  • viele gleichzeitig benutzbare Kommunikationspfade
  • volle Medium-Geschwindigkeit an jedem Port
  • hohe Portdichte

Während sich also z.B. beim herkömmlichen Ethernet alle Teilnehmer 10 MBit/s teilen müssen, stehen bei Switched-Ethernet volle 10 MBit/s zwischen zwei Ports zur Verfügung. Wenn N die Anzahl der Knoten ist, so kann durch Einsatz eines Switches die Bandbreite theoretisch auf das N/2-fache gesteigert werden. Dazu müssten sich aber alle Rechner immer nur paarweise unterhalten. In der Praxis ist es aber eher so, dass die Client-Stationen auf einen oder mehrere Server zugreifen wollen. Da dabei das Segment vom Switching-Hub zum Server immer noch von allen Clients geteilt werden muss, wird es zum Nadelöhr. Eine Erhöhung des Datendurchsatzes wird man daher nur erreichen, wenn man den Uplink zum Server mit einer höheren Bandbreite (z.B. 100 MBit/s) versieht.

Das LAN-Switching ist in der Praxis sehr interessant, da zur Erhöhung der Bandbreite im Netzwerk nur der Hub und der Server-Anschluss geändert werden müssen. Die größere Anzahl der Clients kann dagegen mit der alten Hard- und Software weiterarbeiten.

LAN-Switching ist nicht standardisiert. Dies ist aber auch nicht notwendig, da sich die Technik lokal auf den Switch beschränkt. Für die Endgeräte ist sie transparent.

Technologien, die auf diesem Prinzip basieren, sind u.a.:
ATM (Cell-Switching),
Fiber-Channel,
Ethernet-Switching,
Token-Ring-Switching,
FDDI-Switching,
100VG-AnyLAN
Switched Ethernet
Switched FDDI
Switched Token-Ring

Weitere wichtige Klassifikationen des Switchings sind die Anzahl der anschließbaren Teilnehmer pro Port (Segment-Switching, Port-Switching).

Außerdem spielt das intern verwendete Vermittlungsverfahren (Cut-Through oder Store-and-Forward) eine Rolle.

0-9|A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|alle

Suche im Lexikon nach im

 

Fachartikel

Fünf Schritte zum Hybrid Enterprise [20.05.2015]

Die Cloud hat viele Vorteile: Ständiger Zugriff auf alle Daten, Synchronisation mobiler Geräte, Zusammenarbeit in Echtzeit. Doch es ist unmöglich, jede Anwendung in die Cloud zu stellen – noch ist das gewollt. Deshalb kann es sich für Unternehmen lohnen, in eine hybride IT-Infrastruktur zu investieren: eine Kombination aus Rechenzentren, Applikationen und Daten, die in Private und Public Clouds gehostet werden. Unser Fachbeitrag zeigt fünf Punkte, an denen sich IT-Verantwortliche bei der Umsetzung orientieren können. [mehr]

Grundlagen

Software-defined Networking [5.05.2015]

Der Informationsfluss im Netzwerk ist die Lebensader eines Unternehmens. Die Informationen müssen ungestört fließen und gleichzeitig kontrolliert und überwacht werden, um die Sicherheit und Integrität zu gewährleisten. Dabei haben sich die Anwendungen deutlich weiterentwickelt – von E-Mail, Drucken und Datei-Übertragungen hin zu zeitkritischen Video- und Audio-Übertragungen seit in Unternehmen IP-Netze die zentrale Rolle eingenommen haben. [mehr]